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Abstract
The probability that a generic real, complex or quaternionic two-qubit state
is separable can be considered to be the sum of three contributions. One is
from those states that are absolutely separable, that is those (which can not
be entangled by unitary transformations) for which the maximal concurrence
over spectral orbits (Cmax) is zero. The other two contributions are from
the states for which Cmax ∈ (

0, 1
2

]
, and for which Cmax ∈ [

1
2 , 1

]
. We have

previously (arXiv:0805.0267) found exact formulas for the absolutely separable
contributions in terms of the Hilbert–Schmidt metric over the quantum states,
and here advance hypotheses as to the exact contributions for Cmax ∈ [

1
2 , 1

]
.

A crucial element in understanding the two contributions for Cmax > 0 is the
nature of the ratio (R) of the Cmax-parameterized separability function for the
complex states to the square of the comparable function for the real states–
both such functions having clearly displayed jump discontinuities at Cmax = 1

2 .
For Cmax ∈ (

0, 1
2

]
, the ratio R appears to be of the form 1 + kCmax, except

near Cmax = 1
2 , while for Cmax ∈ [

1
2 , 1

]
, there is strong numerical evidence

that it equals 2 (thus, according to the Dyson-index pattern of random matrix
theory). Related phenomena also occur for the minimally degenerate two-qubit
states and the qubit–qutrit states. Our results have immediate application to
the computation of separability probabilities in terms of other metrics, such
as the Bures (minimal monotone) metric. The paper begins with continuous
embeddings of the separability probability question in terms of four metrics of
interest, using ‘generalized Peres–Horodecki conditions’.
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1. Introduction

One possibly productive strategy to pursue when confronted with an apparently intractable
problem is to embed it in some broader class of problems. Doing so, hopefully, may lead to
new insights and progress, including ones regarding the original (smaller) problem. In the
first of the two basic parts of this paper (sections 2–7), we adopt such embedding strategies
for the task of determining the probabilities–with regard to a number of metrics of quantum-
mechanical interest–that certain generic forms of 2 × 2 or 2 × 3 quantum system are separable
[1–8]. (As computers presumably grow more powerful, these readily formulated, but high-
dimensional (9, 15, etc), and high-degree (e.g. quartic) problems may eventually lose their
apparent present-day intractability (cf [9, 10])—much as did the famous four-color planar
map theorem of Appel and Haken [11, 12]. Nevertheless, it would certainly be appealing to
address these problems with more theoretical understanding than is required by ‘brute force’
computation (cf [13–16]).)

In the second basic part (sections 8–10), building upon our recent work in [17], we
attempt to gain insight—using manifest relations to random matrix theory–into the very
same separability probability questions by determining the nature of certain eigenvalue-
parameterized separability functions. These are expressed as univariate functions of the
maximal concurrence over spectral orbits.

The fundamental question being addressed here of determining the probability that a
generic bipartite quantum state is separable or not was first raised by Życzkowski, Horodecki,
Sanpera and Lewenstein in a pioneering, much-cited 1998 paper [1]. As motivation they wrote:
‘One of the fundamental questions concerning these subjects is to estimate how many entangled
(disentangled) states exist among all quantum states. More precisely, one can consider the
problem of quantum separability or inseparability from a measurement theoretical point of
view, and ask about relative volumes of both sets. There are three main reasons of importance
in this problem. The first reason, of some philosophical implication, may be contained in
the questions: is the world more classical or more quantum? Does it contain more quantum-
correlated (entangled) states than classically correlated ones? The second reason has a more
practical origin. Analyzing some features of entanglement, one often has to rely on numerical
simulations. It is then important to know to what extent entangled quantum states may be
considered as typical. Finally, the third reason has a physical origin. The physical meaning
of separability has recently been associated with the possibility of partial time reversal’
[1, p 883].

In section 2, in the first basic part of the paper, we analyze the cases of generic
9-dimensional real and 15-dimensional complex two-qubit systems. For our calculations, we
utilize the Euler-angle parameterizations of the real (developed by Cacciatori [8, appendix A])
and of the complex 4×4 density matrices (ρ) [18], as well as the Tezuka–Faure (TF) procedure
[19, 20] for generating low-discrepancy sets of (9- and 15-dimensional) points. These points
are employed for quasi-Monte Carlo numerical integration with respect to the product of the
(6- or 12-dimensional) Haar measure over the Euler angles and (3-dimensional) metric-specific
measures over the eigenvalues of the density matrices. In section 3, we turn our attention to
parallel ‘continuous embedding’ analyses pertaining to the 14-dimensional (rank-3) boundary
of the 15-dimensional generic complex 4 × 4 density matrices.

In section 4, we make use of the SU(6)-based Euler-angle parameterization of the 35-
dimensional generic complex qubit–qutrit 6×6 density matrices [21, section 11] to investigate
the corresponding rank-6 and rank-5 problems. In section 5, we investigate formally extending
the range of our basic parameter (α)—used in forming convex combinations—from beyond
[0, 1] to [−∞,∞]. In section 6, we depart from our initial paradigm, employing the parameter

2



J. Phys. A: Math. Theor. 42 (2009) 465305 P B Slater

α, and evaluate the separability probabilities of the generic complex and real two-qubit states
for which the entanglement measure concurrence (C) [22, 23] is less than some threshold.
(There we observe some interesting behavior, involving the intersection of the curves for
different metrics. For C = 1, we obtain the usual separability probabilities.)

The concept of maximal concurrence (Cmax) over spectral orbits [24]:

Cmax = max(0, λ1 − λ3 − 2
√

λ2λ4), (λ1 � λ2 � λ3 � λ4) (1)

(a quantity which can not be increased under unitary transformations) of a two-qubit density
matrix (ρ), where the λ’s are the ordered eigenvalues of ρ, is used in the second basic
set of analyses of the paper (section 8). There, we importantly add to certain findings
[17] concerning the strong goodness-of-fit to two-qubit eigenvalue-parameterized separability
functions (ESFs) of piecewise functions of Cmax. We find evidence of adherence over a half-
domain Cmax ∈ [

1
2 , 1

]
to a Dyson-index pattern both for the generic rank-4 (first investigated

in [17]) and generic rank-3 (as found here (section 8.5.1)) real and complex two-qubit states.
We, further, undertake an analogous examination of: (a) the generic rank-5 qubit–qutrit states
in section 8.6, observing interesting jump discontinuities in the ESFs; and (b) the generic full
rank qubit–qutrit states in section 8.7, where, again, the Dyson-index pattern appears to emerge
over a restricted domain Cmax ∈ [

1
3 , 1

]
. Additionally, in section 9.1, we are able to present

new simple exact results pertaining to certain components of the desired Hilbert–Schmidt
separability probabilities. In these regards, let us draw the reader’s attention, particularly, to
(the titular) figures 34 and 35.

Since when we had earlier addressed the issue of two-qubit separability probabilities
in terms of diagonal-entry-parameterized separability functions (DESFs) [7], we found
apparently total agreement with Dyson-index behavior, the need (remaining unmet) to
reconcile these two forms of Dyson-index patterns (full and partial) is obvious.

Remarks relevant to the two primary sets of analyses—which share the use of concurrence
and are devoted to the determination of separability probabilities-–are given in sections 7
and 10.

1.1. Separability functions

Let us state here that the concept of a separability function-–both in its eigenvalue-
parameterized (ESF) and diagonal-entry-parameterized (DESF) forms—has been developed
in order to reduce the intrinsically high dimensionalities of the generic separability probability
questions. By integrating over the majority of parameters—for example, Euler angles or off-
diagonal entries—one reduces the problems (at least, in the two-qubit case) to ones of (only!)
a 3-dimensional nature. It also appears possible to further reduce the 3-dimensional problems
to single-dimensional ones by finding an appropriate parameter—known to be the ratio of the
product of the 11- and 44-diagonal entries to the product of the 22- and 33-diagonal entries in
the DESF case, and apparently (as numerics strongly indicate) the maximal concurrence over
spectral orbits in the ESF case.

1.2. Metrics employed

The metrics of quantum-mechanical interest that we utilize to form (via their Riemannian
volume elements) measures over the quantum systems are the (Euclidean or flat, non-monotone
[25]) Hilbert–Schmidt [13] and three monotone metrics [26]—the (minimal monotone) Bures
[14], Wigner–Yanase [27] and Kubo–Mori [28] metrics. (We also attempted to include the
information-theoretically significant monotone ‘quasi-Bures’ (Grosse–Krattenthaler–Slater)
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metric [5, 29, 30], which yields the minimax/maximin asymptotic redundancy for universal
quantum coding, but encountered some initial, at least, numerical difficulties in this regard.)

1.3. Prior conjectures

In [7], we were led by a combination of numerical and theoretical (Dyson-index-
related) arguments, involving diagonal-entry-parameterized separability functions (DESFs), to
conjecture that the Hilbert–Schmidt separability probabilities are, respectively, 8

33 ≈ 0.242 424
for the generic complex two-qubit systems and 8

17 ≈ 0.470 588 for its real counterpart. (The
supporting evidence appeared particularly strong for the 8

33 figure.) Also, it has been further
conjectured that for the generic quaternionic two-qubit systems, the corresponding probability
is 72 442 944

936 239 725 ≈ 0.073 3389 [31, equation (15)] [8, p 25]).

We had also earlier advanced in [4, table VI], the ‘silver mean’ (that is,
√

2−1) conjectures
that the generic complex two-qubit Bures separability probability is

P
complex
sep/Bures = 1680(

√
2 − 1)

π8
≈ 0.073 3389 (2)

and the corresponding Kubo–Mori analogue is

P
complex
sep/KM = 1575(

√
2 − 1)

2π8
≈ 0.035 398. (3)

(Additionally, for the ‘average monotone metric’—not employed in this paper—it was

conjectured in [4] that the associated separability probability is 81 664(
√

2−1)

75π8 ≈ 0.047 5329.
Further still, the Wigner–Yanase separability probability was hypothesized to equal the ratio

of 7(
√

2−1)

4 to the not-yet-determined Wigner–Yanase volume of the generic (entangled and
separable) complex two-qubit states.)

In [7, section 10], again studying the corresponding DESFs, the conjectures were put
forth that the generic real and complex qubit–qutrit Hilbert–Schmidt separability probabilities
are 32

213 ≈ 0.150 235 and (agreeing very closely with the numerics) 32
1199 ≈ 0.026 6889,

respectively.

2. Generic full-rank real and complex two-qubit cases

2.1. First set of constraints—convex combinations of determinants of ρ and ρPT

2.1.1. Real two-qubit density matrices. In figure 1, we show as a function of α ∈ [0, 1] the
probabilities

(
P real

metric(α)
)
, in terms of the four metrics under consideration, that for a generic

(9-dimensional) real two-qubit system,

α|ρPT | + (1 − α)|ρ| � 0. (4)

Here ρPT is the partial transpose of ρ and |ρPT |, its determinant. Of course, here and
throughout we incorporate into our analyses, the original, notable Peres–Horodecki necessary
and sufficient conditions for separability in terms of the nonnegativity of ρPT [32, 33]. The
partial transpose of a 4 × 4 density matrix can have at most one negative eigenvalue, so the
condition |ρPT | < 0 is fully equivalent to ρPT having a single negative eigenvalue [34]. (Also,
obviously, the nonnegativity condition |ρ| � 0 is always satisfied.)

The order of dominance of the four monotonically decreasing curves in figure 1, as well
as all the other analogous curves below, turns out—with the important exception of those in
section 6.2, where we observe intersecting behavior—to be

Hilbert–Schmidt > Bures > Wigner–Yanase > Kubo–Mori. (5)
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0.8
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Figure 1. Curves generated by enforcement of determinant-based constraint (4) for the generic
9-dimensional real density matrices. The order of dominance of the four metric-specific curves is
given in (5). 17 100 000 Tezuka–Faure 9-dimensional points were employed in the quasi-Monte
Carlo numerical integration. The values at α = 1 are the embedded (conventional) separability
probabilities.

This, of course, will imply that the associated two-qubit separability probabilities
(corresponding to α = 1) adhere to the same ordering. Since the Bures metric is also
the minimal monotone metric, it is not surprising that it is extremal among the three monotone
metrics under consideration. In estimating these curves, as well as all others displayed
below involving α—except figure 14—we subdivided the unit interval α ∈ [0, 1] into 1000
subintervals.

We can fit the Hilbert–Schmidt curve in figure 1 rather well—the integral over α ∈ [0, 1]
of the sum of squares of the differences being only 0.000 265 57—while exactly achieving the
conjectured separability probability of 8

17 , with the simple function:

P real
HS (α) = 8

8 + 9
√

α
. (6)

2.1.2. Complex two-qubit density matrices. In figure 2, we analogously show as a function
of α ∈ [0, 1], the four probabilities

(
P

complex
metric (α)

)
for a generic (15-dimensional) complex

two-qubit system that the inequality constraint (4) is satisfied. We can fit the Hilbert–Schmidt
curve here very well—the integral over α ∈ [0, 1] of the sum of squares of the differences
being only 0.000 300 92—while achieving our conjectured separability probability of 8

33 [7]
with the function

P
complex
HS (α) =

(
c

c + 25
√

α

)2

, (7)

where c = 8 + 2
√

66. Also, the square of the real counterpart (6) does provide a close fit to the
Hilbert–Schmidt curve in figure 2. (However, our conjectured complex two-qubit separability
probability of 8

33 ≈ 0.242 424 is not equal to the square, 64
289 ≈ 0.221 453, of the conjectured

real separability probability of 8
17 , so conformity to a Dyson-index pattern is not total.)
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0.2 0.4 0.6 0.8 1.0
α

0.1

0.2
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0.4

0.5
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Figure 2. Curves generated by enforcement of determinant-based constraint (4) for the generic
15-dimensional complex density matrices. The order of dominance of the four metric-specific
curves is given in (5). 15 400 000 Tezuka–Faure 15-dimensional points were employed in the
numerical integration.

Additionally, we can very well fit the Bures curve in figure 2 and our corresponding
conjectured ‘silver mean’ separability probability (2) [4] by the function (of the seventh root
of α)

P
complex
Bures (α) = 1680(1 − √

2)(
4
√

105(−1 +
√

2)( 7
√

α − 1) + π4 7
√

α

)2 . (8)

(The sum-of-squares measure of fit between the two curves is 0.000 739 208. However, the
(exact) square root of (8)—deviating substantially from a Dyson-index-like pattern—does not
at all provide a close fit (as in the HS case) to the real Bures counterpart in figure 1.)

2.2. Second set of constraints—convex combinations of minimum eigenvalues of ρ and ρPT

2.2.1. Real two-qubit density matrices. In figure 3 we show as a function of α ∈ [0, 1], the
probabilities for a generic (9-dimensional) real two-qubit system that

αλPT min + (1 − α)λmin � 0, (9)

where the subscript min denotes the smallest of the corresponding four eigenvalues (λ)
of either ρ or ρPT . (As noted, having all eigenvalues nonnegative is fully equivalent to
having a nonnegative determinant for the partial transpose of a 4 × 4 density matrix [34].
The entanglement measure negativity is equal to max[0,−2λPTmin ] [16, p 401]. The Hilbert–
Schmidt distance of an entangled state to the set of all partially transposed sets can be expressed
as a function of the negative eigenvalues of the partial transpose of the entangled state [35].)

2.2.2. Complex two-qubit density matrices. In figure 4 we show as a function of α ∈ [0, 1],
the probabilities for a generic (15-dimensional) complex two-qubit system that the inequality
constraint (9) holds. One can fit the complex HS curve rather closely by the square of the
corresponding real HS curve, particularly so if one adds a small linearly increasing correction
of the form α

30 to this square.
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Figure 3. Curves generated by enforcement of minimum-eigenvalue-based constraint (9) for the
generic 9-dimensional real density matrices. The order of dominance of curves is given in (5).
32 700 000 Tezuka–Faure 9-dimensional points were employed in the numerical integration.

0.2 0.4 0.6 0.8 1.0
α

0.1

0.2
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0.4
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0.6
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Pcomplex
metric α

Figure 4. Curves generated by enforcement of minimum-eigenvalue-based constraint (9) for the
generic 15-dimensional complex density matrices. The order of dominance of curves is given in
(5). 18 450 000 Tezuka–Faure 15-dimensional points were employed.

2.3. Third set of constraints—determinants of convex combinations of ρ and ρPT

2.3.1. Real two-qubit density matrices. In figure 5 we show as a function of α ∈ [0, 1], the
probabilities for a generic (9-dimensional) real two-qubit system that the positive ‘twofold
partial’ transpose condition,

|αρPT + (1 − α)ρ| � 0, (10)

holds. The Hilbert–Schmidt curve is highly linear in character. The line 1 − 9α
17 closely

approximates it, as well as reproducing the conjectured separability probability of 8
17 .
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Figure 5. Curves generated by enforcement of determinant constraint (10) for the generic
9-dimensional real density matrices. The order of dominance of curves is given in (5). 22 500 000
TF 9-dimensional points were employed.

0.2 0.4 0.6 0.8 1.0
α

0.2

0.4

0.6

0.8

1.0

Pcomplex
metric α

Figure 6. Curves generated by enforcement of determinant constraint (10) for the generic
15-dimensional complex density matrices. The order of dominance of curves is given in (5).
14 520 000 TF 15-dimensional points were employed.

2.3.2. Complex two-qubit density matrices. In figure 6 we show as a function of α ∈ [0, 1],
the four probabilities

(
P

complex
metric (α)

)
for a generic complex two-qubit system that the inequality

(9) holds.
In computing figures 5 and 6, we solve the quartic equation |αρPT + (1 − α)ρ| = 0 and

assume that there cannot be more than one solution α ∈ [0, 1]. (Numerically, this did appear
to be the case, except for some isolated instances in which two positive (essentially identical)
roots both very close to zero were found.)

Another possible generalized Peres–Horodecki condition—that is, that the minimum
eigenvalue of αρPT + (1 − α)ρ be nonnegative—appeared to be considerably more
problematical (time-consuming) than (10) to investigate, though we do, in fact, implement
such a condition for the generic complex qubit–qutrit systems (section 4) and in generating
figure 14.
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Figure 7. The curves corresponding to the Hilbert–Schmidt metric plotted above for the three
different constraints for the generic real 9-dimensional two-qubit systems. The quasi-linear curve
based on constraint (10) dominates that based on (9), which dominates that based on (4).

0.0 0.2 0.4 0.6 0.8 1.0
α0.0

0.2
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0.8
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Pcomplex

Bures α

Figure 8. The curves corresponding to the Bures metric plotted above for the three different
constraints for the generic complex 15-dimensional two-qubit systems. The curve based on
constraint (10) dominates that based on (9), which dominates that based on (4).

Let us note that all the curves displayed so far in this communication appear to correspond
to convex functions, but for the last two Hilbert–Schmidt curves.

2.4. Comparison of metric-specific curves for the first three sets of constraints

In figure 7 we show in a single plot, the three Hilbert–Schmidt curves plotted above (one per
figure) for the generic real 9-dimensional two-qubit systems, while in figure 8 we show in
a single plot, the three Bures curves plotted above for the generic complex 15-dimensional
two-qubit systems. In both these figures the order of dominance of the curves is the same—the
curve based on the constraint (10) dominates that based on (9), which, in turn, dominates that
based on (4).
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Figure 9. Curves generated by enforcement of modified (3 × 3 principal minor) constraint (4) for
the generic 14-dimensional rank-3 complex density matrices. The order of dominance of curves is
given in (5). 7 300 000 TF 14-dimensional points were employed.

Of course, we find in both of these figures that the three curves have common points-
of-intersection at α = 1, corresponding to the ‘ordinary’ separability probability (as well as
α = 0).

3. Generic rank-3 complex two-qubit case

The ‘twofold’ volume-to-area-ratio theorem of Szarek, Bengtsson and Życzkowski [36] allows
us to immediately extend our conjecture [7] of Hilbert–Schmidt separability probability of
8

33 for the 15-dimensional generic complex two-qubit states to the fully equivalent conjecture
that the HS separability probability of the states on the 14-dimensional boundary is one-half
of this, that is, 4

33 . In figures 9 and 10, we show our corresponding estimation of the α-
separabilities based on certain obvious modifications of the determinant constraint (4) and the
minimum eigenvalue constraint (9). That is, rather than using the (zero) determinant of the
rank-3 density matrix, we use its generically nonzero 3 × 3 principal minor. Further, rather
than using the minimum (zero) eigenvalue, we employ the minimum of the generically three
nonnegative eigenvalues.

In figure 11, we display the rank-3 α-separability probability estimates based on the
application of the constraint (10). Here we notice some unusual behavior near α = 0 due to
the degeneracy (zero determinant) of a rank-3 two-qubit (4 × 4) density matrix.

4. Generic full-rank complex qubit–qutrit case

Of the three distinct sets of constraints considered in the two-qubit case, only (9) seemed
immediately adoptable to the qubit–qutrit case associated with 6 × 6 density matrices. In
our computations, we now employ the associated SU(6) Euler-angle parameterization [21,
section 11]. In figure 12 we show the corresponding plot.

Further, by specifically checking nonnegativity at each value of α = 1
1000 , . . . 1, we were

able to enforce the condition that the minimum eigenvalue of the matrix convex combination
αρPT +(1−α)ρ be nonnegative. (Nonnegativity of the determinant of the partial transpose is no

10



J. Phys. A: Math. Theor. 42 (2009) 465305 P B Slater

0.2 0.4 0.6 0.8 1.0
α

0.2

0.4

0.6

0.8

1.0

Preal
metric α

Figure 10. Curves generated by enforcement of modified (minimum-eigenvalue-based) constraint
(9) for the generic 14-dimensional rank-3 complex density matrices. The order of dominance of
curves is given in (5). 10 300 000 TF 14-dimensional points were employed.
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Figure 11. Curves generated by enforcement of constraint (10) for the generic 14-dimensional
rank-3 complex density matrices. The order of dominance of curves is given in (5). 4 300 000 TF
14-dimensional points were employed.

longer equivalent—as it is in the two-qubit case [34]—to having no negative eigenvalues, since
two negative eigenvalues yield a positive determinant.) The corresponding plot is displayed
in figure 13.

We can ‘sandwich’ the Hilbert–Schmidt curve in figure 12 between two curves,
corresponding to exact squares, both of which yield the conjectured separability probability
of 32

1199 . These functions are

64

((−8 +
√

2398)
√

α + 8)2
and

64

((−8 +
√

2398)α + 8)2
. (11)
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Figure 12. Curves generated by enforcement of (minimum-eigenvalue-based) constraint (9) for
the generic 35-dimensional complex 6 × 6 density matrices. The order of dominance of curves is
given in (5). 30 650 000 TF 35-dimensional points were employed.
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Figure 13. Curves generated by verifying the nonnegativity of the minimum eigenvalue of
αρPT + (1 − α)ρ for the generic complex qubit–qutrit systems. The order of dominance of curves
is given in (5). 1 300 000 TF 35-dimensional points were employed.

5. Extending range of α-parameter

We have, so far, considered our primary variable α as extending over the unit interval [0, 1].
However, it appears quite interesting and possibly more natural to formally view its range as the
real line [−∞,∞]. In a further analysis, we developed a plot (figure 14) over α ∈ [− 9

4 , 11
4

]
,

of the estimated α-probability that the 4 × 4 matrix αρPT + (1 − α)ρ, where ρ is a generic
complex two-qubit density matrix, has all its four eigenvalues nonnegative.

6. Concurrence-related analyses

6.1. Generalized Peres–Horodecki conditions

In all the analyses reported above, the nonnegativity convex combination constraints
(‘generalized Peres–Horodecki conditions’) utilized have been expressed either in terms of the

12
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Figure 14. Curves generated by verifying the nonnegativity of the minimum eigenvalue of
αρPT + (1 − α)ρ for the generic complex two-qubit systems, using the extended interval
α ∈ [− 9

4 , 11
4 ]. The order of dominance of curves is given in (5). 1 650 000 TF 15-dimensional

points were employed.

determinant or the minimum eigenvalue of ρPT . In the two-qubit case, we have also been able
to investigate similarly motivated conditions using, in conjunction, the maximal concurrence
over spectral orbits (1) [24] of a two-qubit density matrix (ρ), and its concurrence [22]

C = max(0, η1 − η2 − η3 − η4), (η1 � η2 � η3 � η4). (12)

(Here, the λ’s are the ordered eigenvalues of ρ and the η’s are the ordered eigenvalues
of

√√
ρρ̃

√
ρ, where ρ̃ = (σy ⊗ σy)ρ

∗(σy ⊗ σy), and σy ≡ σ2 is a Pauli matrix, and ∗
denotes conjugation. Throughout the reminder of the paper, the symbol σ—consistently with
our previous notation—will denote a ‘separability function’, and not a Pauli matrix.) The
corresponding constraint we employ is

− αC + (1 − α)Cmax � 0. (13)

Since Cmax � C, the constraint holds trivially for α ∈ [
0, 1

2

]
. In figures 15 and 16, we show

for the half-interval α ∈ [
1
2 , 1

]
, the curves for the generic real and complex two-qubit states,

respectively, based on (13), while in figures 17 and 18, we display the corresponding plots for
the generic rank-3 real and complex two-qubit states, respectively.

6.2. Separability probabilities as functions of concurrence—intersecting curves

In this section, we depart from the basic paradigm so far employed in the first basic part
(‘generalized Peres–Horodecki conditions’) of the paper, in which we use convex combinations
of quantum-mechanical terms to form nonnegativity constraints.

Now, we simply estimate—again, with respect to the four metrics in question—the
separability probability of two-qubit states for which the concurrence C is less than some
threshold C0. We show our results in figures 19 and 20. The generic rank-3 counterparts of
these two figures are given in figures 21 and 22. In all four of these cases, the Hilbert–Schmidt
curve intersects the curves for the three monotone metrics from below. In this regard, it has

13
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Figure 15. Implementation of concurrence-based constraint (13) for the generic 9-dimensional
real two-qubit states. The order of dominance of curves is given in (5). 9 250 000 TF-points were
employed.
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Figure 16. Implementation of concurrence-based constraint (13) for the generic 15-dimensional
complex two-qubit states. The order of dominance of curves is given in (5). 6 100 000 TF-points
were employed.

been noted by Bengtsson and Życzkowski that the ‘Bures measure is concentrated at the states
of higher (than the Hilbert–Schmidt) purity’ [16, p 356], since 〈Trρ2〉HS < 〈Trρ2〉Bures. Our
(intersecting) results in this set of concurrence-based analyses are clearly consistent—but now
taking a separability-related form—with that assertion.

7. Remarks

Our motivation in undertaking the first principal part of this study reported above has been
to examine whether it might be feasible to shift the question of determining the two-qubit
separability probabilities with respect to various metrics of quantum-mechanical interest to
the (perhaps more tangible, addressable) question of characterizing the curves that interpolate
between such separability probabilities and the (unit) probabilities that a two-qubit state is

14
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Figure 17. Implementation of concurrence-based constraint (13) for the generic 8-dimensional
real rank-3 two-qubit states. 10 300 000 TF-points were employed.
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Figure 18. Implementation of concurrence-based constraint (13) for the generic 14-dimensional
complex rank-3 two-qubit states. 11 950 000 TF-points were employed.

either separable or entangled (cf [13, 14]). We intend to study the curves generated in still
greater detail, as additional computations render them more precise. (The Tezuka–Faure
procedure is not amenable to the use of statistical tests, though variants of this quasi-Monte
Carlo method have been developed that are.) In particular, it would be of interest to see if
the differences between the curves for the three monotone metrics studied could be explained
directly in terms of the Chentsov–Morozova functions c(x, y) for those metrics [26, 37]. These
are 2

x+y
, 4

(
√

x+
√

y)2 and (log x−log y)

x−y
, for the Bures, Wigner–Yanase and Kubo–Mori metrics,

respectively. (The associated operator monotone functions, f (t), for which c(x, y) = 1
yf ( x

y
)

are 1+t
2 , t+2

√
t+1

4 and t−1
log t

, respectively.) The possible relevance of the Dyson-index-ansatz
to explain differences between results for the generic real and generic complex systems—as
given in section 8 below—should also be examined [7, 17].

Conceiveably, our attempted generalizations here of the Peres–Horodecki conditions
and introduction of the concept of ‘α-separability’ might prove productive in some manner

15



J. Phys. A: Math. Theor. 42 (2009) 465305 P B Slater

0.2 0.4 0.6 0.8 1.0
C

0.2

0.4

0.6

0.8

1.0

Pcomplex
metric C

Figure 19. Separability probabilities of generic complex two-qubit states having concurrence
less than or equal to C. The Hilbert-Schmidt (blue) curve intersects the other three. 21 100 000
TF-points were employed.
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Figure 20. Separability probabilities of generic real two-qubit states having concurrence less than
or equal to C. The Hilbert-Schmidt (blue) curve intersects the other three from below, all near
α = 0.12. There were 7 800 000 TF-points employed.

parallel to the well-studied concepts (also based on generalizations/extensions/embeddings)
of p-Rényi-entropy [38] and of escort distributions [39, 40].

8. Separabilities as piecewise continuous functions of maximal concurrence

8.1. Objective

Here, we begin the second basic part of our paper. We importantly amend a certain parenthetical
remark made in our recent paper [17] to the effect that although two-qubit diagonal-entry-
parameterized separability functions (DESFs) had been shown [7, 31] to clearly conform to a
pattern dictated by the ‘Dyson indices’ (β = 1 (real), 2 (complex), 4 (quaternionic)) of random
matrix theory, this did not appear to be the case with regard to eigenvalue-parameterized
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Figure 21. Separability probabilities of generic rank-3 complex two-qubit states having
concurrence less than or equal to C. The Hilbert–Schmidt (blue) curve intersects the other three.
14 000 000 TF-points were employed.
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Figure 22. Separability probabilities of generic rank-3 real two-qubit states having concurrence
less than or equal to C. The Hilbert–Schmidt (blue) curve intersects the other three. 9 750 000
TF-points were employed.

separability functions (ESFs). (We remark here that the ‘value of β is given by the number
of independent degrees of freedom per matrix element and is determined by the antiunitary
symmetries . . . It is a concept that originated in Random Matrix Theory and is important for
the Cartan classification of symmetric spaces’ [41, p 480]. The Dyson index corresponds to
the ‘multiplicity of ordinary roots’, in the terminology of symmetric spaces [42, table 2].) But
upon further examination of the extensive numerical analyses reported in [17], we found quite
convincing evidence that adherence to the Dyson-index pattern does also hold for ESFs, at
least as regards the upper half-range 1

2 � Cmax � 1 of the maximal concurrence over spectral
orbits (1).

To be specific, it strongly appears that in this upper half-range, the real two-qubit ESF is

equal to to (2−2Cmax)
3
2√

30
, and its complex counterpart—in conformity to the Dyson-index pattern—

proportional to the square of the real ESF, that is, (2−2Cmax)
3

15 . The previously documented

17
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piecewise continuous (‘semilinear’) behavior in the lower half-range 0 � Cmax � 1
2

appeared to lack any particular Dyson-index-related interpretation—which seemed somewhat
paradoxical in terms of our DESF-findings [7, 31]. However, we report new insights into this
problem below (section 9.3).

8.2. Previous ESF findings

The study [17] had been devoted to the question of determining for the generic (9-dimensional)
real and (15-dimensional) complex two-qubit systems, the nature of certain trivariate
‘eigenvalue-parameterized separability functions’ (ESFs). These (metric-independent) ESFs,
it was argued, could substantially assist in the determination of separability probabilities
in terms of certain metrics (the Hilbert–Schmidt and Bures being the most conspicuous
examples). (In [7], DESFs were successfully used in the Hilbert–Schmidt case, but they do
not seem as useful for the Bures and other montone metrics, the standard formulas for which
are expressed in terms of eigenvalues, and not diagonal entries.) We further investigated in [17]
the possibility that these prima facie trivariate functions of the eigenvalues λi (i = 1, . . . , 4)

of 4 × 4 density matrices
(
λ4 = 1 − 	3

i λi

)
were expressible as univariate functions:

S
(β)

4 (λ1 . . . λ4) = σ (β)(Cmax(λ1 . . . λ4)), (14)

of the maximal concurrence Cmax—given by (1)—over spectral orbits [24, section 7] [43, 44].
(At this point in our presentation, let us—motivated by Dyson-index conventions—regard
β in (14) only as a notational (dummy variable), not calculational device taking the values
1 (real), 2 (complex), 4 (quaternionic).)

8.3. Jump discontinuities

Our main conclusions in [17] were that—if the reducibility-to-univariance property (14) held,
as our extensive numerical evidence appeared to suggest might be the case (being able to
explain almost 99% of the variance [17, section II.B.1])—the associated real and complex
univariate functions both had jumps of approximately 50% magnitude at Cmax = 1

2 , as well
as a number of additional discontinuities (remarkably coincident in both the real and complex
cases) in the lower half-range Cmax ∈ (

0, 1
2

]
. (The joint jumps at Cmax = 1

2 were displayed
in [17] in figures 2 and 6. We have since found a small programming error that caused the
two curves in figure 2 there to be slightly more misaligned—by 1

500 —than they should have
been.) Also, both univariate functions appeared to be simply linear between certain of these
discontinuities. The upper half-range Cmax ∈ [

1
2 , 1

]
—in which the univariate functions of

Cmax took lesser values—did not command our attention in [17], seeming to be of relatively
less interest. Our only pertinent observation there was that there did not appear to be any
discontinuities in that segment.

8.4. New Dyson-index-related findings

Now, in fact, turning our attention more closely to this upper half-range Cmax ∈ [
1
2 , 1

]
, we

readily find strong evidence for a very interesting Dyson-index-type phenomenon. If we
normalize our extensive numerical estimates from [17] of σ 1(Cmax) and σ 2(Cmax) to both
equal to 1 at the jump discontinuity point Cmax = 1

2 , then a joint plot (figure 23) of the latter
normalized (complex) function versus the square of the former normalized (real) function for
Cmax ∈ [

1
2 , 1

]
remarkably shows no perceptible difference between the two resulting curves.

(The sample (quasi-Monte Carlo) estimate of σ 2
(

1
2

)
is 0.065 1586 and that of σ 1

(
1
2

)
) is

18
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Figure 23. Joint plot of numerical estimates of (
σ 1(Cmax)

σ 1( 1
2 )

)2 and σ 2(Cmax)

σ 2( 1
2 )

for Cmax ∈ [ 1
2 , 1].
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Figure 24. Numerical estimate of (
σ 1(Cmax)

σ 1( 1
2 )

)2 − σ 2(Cmax)

σ 2( 1
2 )

.

0.180 3748.) In figure 24, we show—on a much finer scale than used in figure 23—the actual
(very small) numerically obtained differences:(

σ 1(Cmax)

σ 1
(

1
2

)
)2

− σ 2(Cmax)

σ 2
(

1
2

) , (15)

between them. Of further considerable importance, figure 25 is a repetition of figure 23, but
along with the insertion now of the function

(2 − 2Cmax)
3 = 8(1 − Cmax)

3, (16)

which we see fits our two estimates very well. Assuming that (16) is the correct form (up
to the still not exactly known normalization factor) of σ 2(Cmax) over Cmax ∈ [

1
2 , 1

]
, we can

estimate the associated contribution to the separability probabilities from density matrices
corresponding to this half-range to the Hilbert–Schmidt and Bures separability probabilities
of generic complex two-qubit systems to be 0.010 0578 and 0.019 4829, respectively. (The
real counterparts of these separability probabilities are, then, 0.025 4346 and 0.010 0578,
respectively (cf (29), (30)).)
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Figure 25. The two functions in figure 23, along with the additional (very closely-fitting) function
(2 − 2Cmax)

3.

Let us further note that our sample estimate of the ratio

σ 2
(

1
2

)
(
σ 1

(
1
2

) )2 = 0.065 1586

0.180 37482
= 2.002 72 (17)

is very close (and possibly theoretically exactly equal) to 2.
Over 0 � Cmax � 1

2 , the range of primary interest in [17], the estimates of the real and
complex two-qubit separability functions intersect (near Cmax = 0.1812), and appear to have
linear segments over the same subintervals [17, figures 1, 5, 7]. These features appeared to
make any immediate application of the Dyson-index pattern problematical in this lower half-
range. So, the behaviors of the univariate functions σ (β)(Cmax) (β = 1 (real), 2 (complex))
over the two indicated regimes of Cmax seem to be highly distinct. The point Cmax = 1

2 clearly
serves as a point of major behavioral transition, with the lower half-range, then, appearing
perhaps to be the more theoretically challenging of the two. (We will observe what appears to
be similarly dichotomous Dyson-index behavior in the qubit–qutrit case (figure 31). Perhaps
one might view the two regimes as semiclassical and quantum in nature.)

An outstanding question is what are the specific values of σ 1
(

1
2

)
and σ 2

(
1
2

)
, which we

used as normalization factors in our analyses above. The nearness to 2 of the ratio (17) may
be a helpful guide in this regard. In fact, let us take this opportunity to further indicate that in
our ongoing supplemental analyses—in which we use 5000, rather than 500 sampling points
in the interval [0, 1]—we have obtained for the ratio (17) the estimate

σ 2
(

1
2

)
(
σ 1

(
1
2

) )2 = 0.066 663

0.182 752
= 1.996 05. (18)

This ratio would be exactly 2 if we took for the numerator of (18) the value 1
15 ≈ 0.066 6667

and for the denominator, 1
30 ≈ 0.182 5742. We will, in fact, assume these exact values in

seeking to ascertain in section 9, the exact contributions over Cmax ∈ [
1
2 , 1

]
to the total

Hilbert–Schmidt two-qubit generic real and complex separability probabilities.

8.5. Rank-3 complex and real two-qubit cases

Here, we apply the same maximal-concurrence ansatz (14) just discussed and applied to the full
(rank-4) complex and real two-qubit cases, to the minimally degenerate (rank-3) counterparts.
The main conceptual point to note is that the formula for the maximal concurrence (1) now
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Figure 26. Eigenvalue-parameterized separability functions, expressed in terms of maximal
concurrence, for the minimally degenerate rank-3 generic real and complex two-qubit states. The
complex (red) curve is initially dominant. For each TF-point employed (2 062 400 in the complex
case and 2 331 300 in the real case), separability is checked for 500 equally spaced values of
Crank-3

max . There appear to be discontinuities at Crank-3
max = 1

2 .
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Figure 27. The rank-3 counterpart to figure 25, with the rather well-fitting function (2−2Crank-3
max )

7
2

replacing (2 − 2Crank-4
max )3.

degenerates to

Crank-3
max = λ1 − λ3, (λ1 � λ2 � λ3). (19)

In figure 26 we show the joint plot of the corresponding real and complex curves.
The estimated complex (red) curve initially dominates the estimated real (blue) curve
(cf [17, figure 1]).

8.5.1. Close resemblance to generic rank-4 Dyson-index pattern. It appears now—as a plot
(figure 27) parallel to that displayed in figure 25—that the Dyson-index pattern continues
to hold for the range Crank-3

max ∈ [
1
2 , 1

]
in the two-qubit generic rank-3 cases, but with the

replacement of
(
2 − 2Crank-4

max

)3
by

(
2 − 2Crank-3

max

) 7
2 .

To test the possible applicability of the rank-3 version of the univariance hypothesis
(14), we estimated the real and complex rank-3 two-qubit Hilbert–Schmidt separability
probabilities using the ESFs displayed in figure 26. The values we obtained were 0.208 172 and
0.104 852, respectively (while the corresponding conjectured values were perhaps somewhat
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Figure 28. Univariate marginal probability distributions (20) and (21) over Crank-3
max of the Hilbert–

Schmidt measures on the eigenvalues. The quaternionic curve has the highest peak and the
real curve, the lowest. All three curves are asymmetric about Crank-3

max = 1
2 and skewed to the

right. The real peak (mode) is at 0.534 989, the complex at 0.549 857, and the quaternionic at
0.558 738, while the medians are 0.537 07, 0.5483 and 0.556 787, respectively. Also, the means
are 781

2·36 ≈ 0.535 665, 35
26 ≈ 0.546 875 and 27 313

214·3 ≈ 0.555 684, respectively.

disappointingly different, calling for further analysis, that is 4
17 ≈ 0.235 294 and 4

33 ≈
0.121 212). We can express these results as one-dimensional integrals over Crank-3

max ∈ [0, 1] of
the product of the real function displayed in figure 26, and

(
using C ≡ Crank-3

max

)
the univariate

marginal Hilbert–Schmidt probability distribution (figure 28):

margreal(C) =
{

− 1792
81 C4(12C2 − 5) 0 < C � 1

2
3584
81 (C − 1)4C(4C(5C − 1) − 1) 1

2 < C < 1
(20)

and the integral over Crank-3
max ∈ [0, 1] of the product of the complex function displayed in

figure 26, and the univariate marginal Hilbert–Schmidt probability distribution (figure 28):

margcomplex(C)

=
{

− 7280
729 (C − 1)7C2(C(C(C(16 325C − 7693) − 379) + 315) + 45) 1

2 < C < 1
7280
729 C7

(
155C6 + 1287C4 − 1089C2 + 231

)
0 < C � 1

2 .
(21)

(These distributions are ‘marginal’, in the sense that they are obtained by integrating the HS
or Bures measure defined on the 3-dimensional simplex of eigenvalues—obtainable from the
papers of Życzkowski and Sommers [13, 14]—over two of the three coordinates (the third
coordinate being Cmax) used to parameterize the simplex.) Also, we have for 0 < C < 1

2 ,

margquaternionic(C)

= 920 9200C13(3(7133C10+236 790C8+253 023C6−729 980C4+497 097C2−142 766)C2+46 189)

531 441 . (22)

(The quaternionic expression for 1
2 < C < 1 is somewhat more cumbersome in nature

to present.) To obtain these univariate functions, we have transformed one of the
eigenvalues, say λ1 to Crank-3

max ≡ λ1 − λ3 (the jacobian of the transformation being unity)
and integrated (restricted to the Weyl chamber of ordered eigenvalues) the corresponding
(bivariate in this case) Hilbert–Schmidt measures (over the eigenvalues) [13, equations
(4.1), (6.5), (7.8)] over λ2. Fitting the means and variances of ((20)–(22)), we can
obtain beta distribution B(p,q) approximations to the real, complex and quaternionic
probability distributions using the paired sets of parameters {p, q} = {

47 641
7196 , 41 297

7196

} ≈
22
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Figure 29. Counterpart to figure 28 based on the Bures metric. The order of curves is the same.
Numerical methods were employed.

{6.620 48, 5.738 88} ,
{

12 323 885
114 2816 , 10 211 219

114 2816

} ≈ {10.7838, 8.935 14} and
{

4108 424 031 600 889
214 515 575 216 232 ,

3285 024 436 207 367
214 515 575 216 232

} ≈ {19.1521, 15.3137}, respectively. Beta distributions, defined over the
unit interval, are a general type of statistical distribution, related to the gamma distribution,
and have two free parameters.

The Hilbert–Schmidt (total–separable and nonseparable) probability that a minimally
degenerate two-qubit state has maximal concurrence within the range

[
1
2 , 1

]
is 49

81 = (
7
9

)2 ≈
0.604 938 for real states, 996 431

211·36 ≈ 0.667 405 for complex states, and 3335 170 241 153
223·312 ≈ 0.748 123

for quaternionic states. (For the (smaller) full-rank counterparts see section 9.4.) In
figure 29, we show the counterpart to figure 28 based on the Bures (minimal monotone) metric.
Let us assume (cf figure 27) that the ESF in the real case is proportional over Crank-3

max ∈ [
1
2 , 1

]
to

(
2 − 2Crank-3

max

) 7
4 and in the complex case to the square of this. Then, we have that the

contributions over this half-domain to the Hilbert–Schmidt real and complex separability
probabilities, respectively, are 26·7·1249

36·5·13·31 ≈ 0.380 924 (multiplied by a normalization constant
approximately 0.177 365) and 13·289 014 610 051

29·39·5·11·23·29·31 ≈ 0.327 832 (multiplied by a normalization
constant approximately 0.086 232).

8.6. Rank-5 complex qubit–qutrit case

For the full-rank qubit–qutrit case, the counterpart—although not enjoying all the properties—
of the two-qubit maximal concurrence formula (1) is [24, p 16]

Crank-6
max = max(0, λ1 − λ5 − 2

√
λ4λ6), (λ1 � λ2 � λ3 � λ4 � λ5 � λ6), (23)

which, obviously (since λ6 = 0), degenerates (using the same eigenvalue-ordering) to

Crank-5
max = λ1 − λ5. (24)

In figure 30—again under the hypothesis (ansatz) that the corresponding eigenvalue-
parameterized-separability function is a (univariate) function of the maximal concurrence
expression (24)—we show the analogue of figure 26 for the minimally degenerate (rank-5)
generic real and complex qubit–qutrit case. (Again, in the complex case, we used the SU(6)-
Euler-angle parameterization of Cacciatori [8, appendix A], while we used a yet unpublished
Euler-angle parameterization of his of SO(6) for the real case.) There are evident jumps in the
real (blue) curve at Crank-5

max = 1
3 and 1

2 . (The still erratic nature of the complex (red) curve—we
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Figure 30. Qubit–qutrit eigenvalue-parameterized separability functions as a function of maximal
concurrence for the generic rank-5 real and complex 6 × 6 density matrices. 104 200 TF-points
were used in the real case and 181 600 in the complex case, while, for each such point, the interval
[0, 1] was sampled at 1000 equally spaced locations of Crank-5

max . The complex (red) curve is initially
dominant. There are manifest discontinuities (jumps) at Crank-5

max = 1
3 and 1

2 in the real case.

used 1000 (not 500) equally spaced points in [0, 1]—makes it, at this point of sampling, difficult
to gauge the applicability of the Dyson indices.) To test the applicability of the rank-5 version
of the univariance hypothesis (14), we estimated the real and complex rank-5 qubit–qutrit
Hilbert–Schmidt separability probabilities using the ESFs displayed in figure 30. The values
we obtained were 0.097 232 and 0.022 6654, respectively, while the corresponding conjectures
were—again somewhat disappointingly different— 16

213 ≈ 0.075 1174 and 16
1199 ≈ 0.013 3445.

8.7. Full-rank real and complex qubit–qutrit cases

In the two-qubit case, we had evolved a computational strategy in which we used the
Mathematica command FindInstance to systematically generate random sets of three or four
eigenvalues that yielded values of the maximal concurrence ((1) or (19)) at equally spaced
intervals Cmax ∈ [0, 1]—and, similarly, in the rank-5 qubit–qutrit case (24). However, due to
greater complexity in the rank-6 case, this strategy did not prove at all feasible for generating
random sets of six eigenvalues yielding equally spaced values of the maximal concurrence
(23).

So, we altered our approach, now simply randomly generating density matrices (again
using the same quasi-Monte Carlo routines [20]) and recording their associated values
of concurrence. We ‘binned’ these concurrence values into intervals of length 1

50 , and
averaged the total measures recorded by the number of observations within the individual
bins. We interpolated these average values to obtain the associated eigenvalue-parameterized
separability functions (ESFs). We have generated the corresponding curves for both the full-
rank real and complex generic qubit–qutrit cases, but they are still somewhat crude/rough
in character. Nevertheless, we plot in figure 31(cf figures 23 and 27) normalized forms of
the complex (red) curve and the square of the real (blue) curve. They appear to indicate
possible adherence to the Dyson-index ansatz, since the two curves closely ‘track’ each other,
at least (as our generally observed pattern in the two-qubit case would suggest) for the higher
values of Crank-6

max . (It seems that this domain of possibly strict Dyson-index behavior may
be Crank-6

max ∈ [
1
3 , 1

]
, while in the full-rank two-qubit case (figure 23), it highly convincingly

appeared to be Crank-4
max ∈ [

1
2 , 1

]
. Our level of binning is perhaps too coarse for the detection of
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Figure 31. Joint plot (cf figure 23)—to test Dyson-index ansatz—of numerical estimates of the

real (
σ 1(Crank-6

max )

σ 1( 1
3 )

)2 and complex σ 2(Crank-6
max )

σ 2( 1
3 )

. (The complex (red) curve is lower at Crank-6
max = 0.)

There were 62 086 051 20-dimensional TF-points (each point corresponding to a single density
matrix) used in the real case and 451 373 489 35-dimensional TF-points in the complex case. Each
of these points was allocated to one of fifty bins in the interval Crank-6

max ∈ [0, 1].
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rank 6

Figure 32. Same plot as in figure 31, but restricted to Crank-6
max ∈ [ 1

3 , 1], along with the insertion of

the smooth, interweaving function ( 4
3 − Crank-6

max )7.

possible discontinuities in the two curves.) We were interested in seeing how close the plotted
curves came—under the rank-6 qubit–qutrit version of the univariance hypothesis (14)—to
yielding the conjectured HS real and complex separability probabilities of 32

213 and 32
1199 [7,

section X], but the requisite numerical integrations proved quite problematical to perform.
In figure 32 we plot the two functions in figure 31 over the interval

[
1
3 , 1

]
, along with the

interweaving curve
(

4
3 − Crank-6

max

)7
.

9. Separability probability decompositions over Cmax regions

9.1. Cmax = 0 domain

One can—in an apparently natural manner—consider the two-qubit real, complex and
quaternionic Hilbert–Schmidt separability probabilities to be the sum of three components:
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(1) the Hilbert–Schmidt absolute separability probabilities (corresponding to Cmax = 0);
(2) the probabilities over the range Cmax ∈ (

0, 1
2

]
and (3) the probabilities over the

range Cmax ∈ [
1
2 , 1

]
. (For a contour plot of the 3-dimensional body Cmax = 0, see

[8, figure 2].) Now, we have previously been able to compute the absolutely separable
components [8, equations (34), (35)]. These are

P
HSreal
Cmax=0 = 6928 − 2205π

2
9
2

≈ 0.034 8338, (25)

P
HScomplex

Cmax=0 = ψ1 − ψ2

√
2 − ψ3

√
2π + ψ4

√
2 sec−1(3)

21635
≈ 0.003 658 263 054 3035 (26)

(the Bures (minimal monotone) metric analogue being considerably smaller, 0.000 161 792
[8, p 25]) where

ψ1 = 956 877 309 536, ψ2 = 781 862 943 168,

ψ3 = 746 624 752 335, ψ4 = 1990 999 339 560,

and

P
HSquat

Cmax=0 = −13(φ1 + φ2

√
2 + φ3

√
2π − φ4

√
2 sec−1(3))

234 · 311
≈ 0.000 039 8703, (27)

where

φ1 = −806 338 156 306 739 134 839 776, φ2 = 658 857 590 468 226 345 222 144,

φ3 = 629 162 653 900 414 735 065 195, φ4 = 1677 767 077 067 772 626 840 520.
(28)

(These are ‘conjecture-free’ results, not dependent on any Dyson-index ansatz. In
[8, equations (36), (37)] we gave a considerably lengthier, but fully equivalent, expression
for P

HSquat

Cmax=0. One might seek to find explanations for the large integers displayed above in
terms of gamma functions. The computational challenges to computing analogous absolute
separability results for the qubit–qutrit states appear to be highly formidable.)

9.2. Cmax ∈ [
1
2 , 1

]
Further, accepting the strongly-supported Dyson-index ansatz (figure 25 and (18)) that

σ (1)(Cmax(λ1, . . . , λ4)) = (2−2Cmax)
3
2√

30
and σ (2)(Cmax(λ1, . . . , λ4)) = (2−2Cmax)

3

15 for Cmax ∈[
1
2 , 1

]
, we can now add to the absolute separability probabilities (Cmax = 0) listed immediately

above, the conjectured probability contributions:

P
HSreal

Cmax∈[ 1
2 ,1]

=
√

3
10 (3162 214 − 738 885

√
2 tan−1(

√
2))

212 · 5 · 7 · 17 · 19
≈ 0.025 596 477 78, (29)

and

P
HScomplex

Cmax∈[ 1
2 ,1]

=
7
(

148 453 588 142 − 79 729 806 357
√

2 cot−1
(

5√
2

))
231 · 37 · 17

≈ 0.010 290 595 19.

(30)

Further, using the Dyson-index ansatz with β = 4, we obtain

P
HSquat

Cmax∈[ 1
2 ,1]

=
5
(
ζ1 − ζ2

√
2 cot−1

(
5√
2

))
266 · 38 · 11 · 29 · 31

κ ≈ 0.165 191κ, (31)
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where

ζ1 = 174 916 374 035 295 022 487 516 506, ζ2 = 42 964 561 240 209 557 008 032 951,

(32)

and κ is the β = 4 unknown and yet-unconjectured analogue of the presumed real and complex
constants 1√

30
and 1

15 . (In computing (29)–(32), we found a joint transformation of the form

α1 =
√

λ2
λ4

and α2 = √
λ2λ4 to be helpful.)

9.2.1. Corollaries to the ‘twofold’ SBZ theorem. Since the probability is zero that a generic
minimally degenerate two-qubit state is absolutely separable

(
that is, P rank-3 = P rank-3

Cmax∈[0,1]

)
—

as can be immediately deduced from (24)—we have simple corollaries to the twofold-theorem
of Szarek, Bengtsson and Życzkowski [36] of the form

P rank-4
Cmax∈[0,1]

P rank-3
Cmax∈[0,1]

= 2 − P rank-4
Cmax=0

P rank-3
Cmax∈[0,1]

= 2 − P rank-4
Cmax=0

P rank-3
, (33)

where the Ps are Hilbert–Schmidt separability probabilities, for the real, complex or
quaternionic two-qubit states.

9.3. Cmax ∈ (
0, 1

2

]
So, the most conspicuous missing parts in the Hilbert–Schmidt separability probability ‘puzzle’
appear to us to be formulas for P

HSreal

Cmax∈(0, 1
2 ]
, P

HScomplex

Cmax∈(0, 1
2 ]

and P
HSquat

Cmax∈(0, 1
2 ]

. Of course, we can

subtract the sums of the other two parts
(
P

HSreal
Cmax=0 + P

HSreal

Cmax∈[ 1
2 ,1]

, P
HScomplex

Cmax=0 + P
HScomplex

Cmax∈[ 1
2 ,1]

and

P
HSquat

Cmax=0 + P
HSquat

Cmax∈[ 1
2 ,1]

)
from our overall conjectures of 8

17 , 8
33 and 72 442 944

936 239 725 to obtain ‘induced’

conjectures about these third components.
Since it now appears crucial to, additionally, model the eigenvalue-parameterized

separability functions over the domain Cmax ∈ (
0, 1

2

]
, we present in figure 33, for the

convenience of the interested reader, the previously generated [17, figure 1] estimates of
these functions. The real (blue) curve is close to linear (≈1 − 1.75Cmax). Also, we have noted
that the complex (red) curve is quite well fitted by cos22 (Cmax) and cos5 (2Cmax). However,
we appear here to lack a strictly similar Dyson-index ansatz to serve as a guide in constructing
these two functions (cf [7]). Also, there were indications given in [17, figures 3–5] that these
two functions have multiple (matching) points of discontinuity in Cmax ∈ (

0, 1
2

]
. (These

were Cmax ≈ 0.204, 0.294, 0.34.) The lack of a Dyson-index pattern strictly similar to that
found apparently for Cmax ∈ [

1
2 , 1

]
to exploit for Cmax ∈ (

0, 1
2

]
is immediately apparent from

figure 34. A flat line over at least some subdomain of Cmax ∈ (
0, 1

2

]
would indicate such a

Dyson-index pattern. Clearly, no such flatness appears there. However, it now seems that
there is a pattern of the approximate form:

σ 2
(
Crank-4

max

) =
(√

1 + 2Crank-4
max σ 1

(
Crank-4

max

))2
, Crank-4

max ∈ (
0, 1

2

]
. (34)

(We have already noted that σ 1
(
Crank-4

max

) ≈ 1 − 1.75Crank-4
max in this half-domain.) The highly

interesting nature of figure 34 led us to similarly re-examine the minimally degenerate rank-3
two-qubit scenarios (figure 26). Thus, we obtained figure 35. Now 1 + 3Cmax serves as an
excellent linear approximation, and we have a relation analogous to (34):

σ 2
(
Crank-3

max

) =
(√

1 + 3Crank-3
max σ 1

(
Crank-3

max

))2
, Crank-3

max ∈ (
0, 1

2

]
. (35)
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Figure 33. Previously generated [17, figure 1] estimates of the two-qubit real and complex
eigenvalue-parameterized separability functions over the domain Cmax ∈ (0, 1

2 ]. The complex
(red) curve is initially higher-valued and the real (blue) curve, close to linear.
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σ2 Cmax σ1 Cmax
2

Figure 34. Estimated ratio (for the full-rank two-qubit case) of σ 2(Crank-4
max )

(σ 1(Crank-4
max ))2 along with the

approximating lines 1 + 2Cmax and 2 the vertical lines Cmax = 43
100 and 1

2 .

If we plot σ 2(Crank-4
max )

1+2Crank-4
max

versus
(
σ 1

(
Crank-4

max

))2
and also σ 2(Crank-3

max )

1+3Crank-3
max

versus
(
σ 1

(
Crank-3

max

))2
over the

half-domain, the two curves within each set are essentially indistinguishable. We have inves-
tigated analogous plots of the same form for the minimally degenerate qubit–qutrit (figure 30)
and full-rank (figure 31) cases over Cmax ∈ [

0, 1
3

]
. They are much rougher in nature, due

to our limited sampling, but still indicate initial monotonically increasing (non-flat) behavior
over Cmax.

9.4. Total probabilities over Cmax regions

Let us also point out that the Hilbert–Schmidt probability (P̃ ) that a generic two-qubit real
state (separable or entangled) lies in the domain Cmax ∈ [

1
2 , 1

]
is

P̃
HSreal

Cmax∈[ 1
2 ,1]

= 75 962 − 25 515
√

2 tan−1(
√

2)

213 · 33
≈ 0.187 584, (36)
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Figure 35. Estimated ratio (for the minimally degenerate rank-3 two-qubit case) of σ 2(Crank-3
max )

(σ 1(Crank-3
max ))2

along with the approximating lines 1 + 3Cmax and 11
4 and the vertical lines Cmax = 9

20 and 1
2 .

with the complex counterpart being

P̃
HScomplex

Cmax∈[ 1
2 ,1]

=
174 957 361 466 − 124 912 178 055

√
2 cot−1

(
5√
2

)
231 · 35

≈ 0.241 961, (37)

and the quaternionic analogue being

P̃
HSquat

Cmax∈[ 1
2 ,1]

=
γ1 − γ2

√
2 cot−1

(
5√
2

)
263 · 310

≈ 0.323 053, (38)

where

γ1 = 217 894 901 318 574 565 900 294, γ2 = 107 614 737 772 623 370 233 945. (39)

(The comparable total probabilities for the minimally degenerate two-qubit states have been
given in section 8.5.1.) Since for the absolutely separable states (Cmax = 0), the two
probabilities PCmax=0 and P̃ Cmax=0 are equivalent, we can immediately determine (by subtracting
from 1 our known HS probabilities PCmax=0 and P̃ Cmax∈[ 1

2 ,1]) the complementary probabilities,

P̃ Cmax∈(0, 1
2 ]. Numerically, these are P̃

HSreal

Cmax∈(0, 1
2 ]

≈ 0.777 582, P̃
HScomplex

Cmax∈(0, 1
2 ]

≈ 0.754 381 and

P̃
HSquat

Cmax∈(0, 1
2 ]

≈ 0.676 907.

10. Concluding remarks

Our analyses of two-qubit diagonal-entry-parameterized separability functions (DESFs)
[7, 31, 45] and eigenvalue-parameterized separability functions (ESFs) [8, 17] completely
share a common goal: the determination of two-qubit separability volumes and probabilities
(in terms of various metrics). As pieces of these formidable objectives begin to be assembled,
we can pose a further challenge—to find transformations between the two different sets of
coordinates used—that is, (1) the diagonal entries and (2) the eigenvalues of 4 × 4 density
matrices—that will map one set of separability functions into the other. The Schur–Horn
theorem, which asserts that the decreasingly ordered vector of eigenvalues of an Hermitian
matrix majorizes the decreasingly ordered vector of its diagonal entries [46, chapter 4]
(cf [47, 48]), would appear to be of possible relevance in this regard, particularly since
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the maximal concurrence Cmax over spectral orbits (12) is expressed in terms of the ordered
eigenvalues.

In terms of the diagonal entries (D1,D2,D3,D4 = 1−D1 −D2 −D3) of 4×4 two-qubit
density matrices, we can express the conjectured Hilbert–Schmidt separability probability [7],
8

33 , of generic complex states in the form

8

33
= 12 108 096 000

71

∫ ∫ ∫
(D1D2D3D4)

3(3 − ν)2ν dD1 dD2 dD3, (40)

where ν ≡ D1D4
D2D3

, and the integration extends over the unit simplex, but with the restriction

ν � 1. (We note that 12 108 096 000 = 29 · 33 · 53 · 72 · 11 · 13. Let us also observe that the
variable log ν conveniently ranges over the entire real axis and is symmetric about the origin.)

Additionally, in terms of the eigenvalues (λ1, λ2, λ3, 1 −λ1 −λ2 −λ3) of 4 × 4 two-qubit
density matrices, we can express this same separability probability as (cf (14))

8

33
= 2201 472 000

∫ ∫ ∫
σ (2)(Cmax(λ1, . . . , λ4))�

4
i<j (λi − λj )

2 dλ1 dλ2 dλ3, (41)

and the integration extends over that part (Weyl chamber [16]) of the unit simplex for which
λ1 � λ2 � λ3 � λ4. (We note that, interestingly, in light of the just previous factorization,
2201 472 000 = 210 · 33 · 53 · 72 · 13.) Here σ (2)(Cmax(λ1, . . . , λ4)) is the (two-qubit complex
(β = 2)) eigenvalue-parameterized separability function that we have previously sought to
determine [17, figure 1], and was found to be very well fitted by (2−2Cmax)

3

15 for Cmax ∈ [
1
2 , 1

]
(figure 25 and (18)). (It is possible to reexpress these two last integrals so that both are
taken over the same complete 3-dimensional unit simplex.) Further still, our generic complex
two-qubit Bures separability probability conjecture (2) [4, table VI] takes the form

1680(
√

2 − 1)

π8
= π2

71 680

∫ ∫ ∫
σ (2)(Cmax(λ1 . . . λ4))√

λ1λ2λ3λ4
�4

i<j

(λi − λj )
2

λi + λj

dλ1 dλ2 dλ3. (42)

It is abundantly clear: (a) that this (piecewise continuous) function σ (2)(Cmax(λ1, . . . , λ4))

has a jump discontinuity at Cmax = 1
2 (as well as does its real counterpart σ (1)(Cmax(λ1 . . . λ4))

and (b) that in the diagonal-entry-parameterized scenario, the value ν = D1D4
D2D3

= 1 is a locus
of special symmetry. In this regard, we might speculate that if one can find a coordinate
transformation between the two separability probability expressions ((40) and (41)), then
those values of the λi’s for which Cmax = 1

2 will be mapped to those values of the Di’s for
which ν = 1.

Through the use of the jacobian transformation of the diagonal entry D3 (say) to ν

[45, equation (11)], and subsequent integration over D1 and D2, it is possible to explicitly
reduce the computation of the trivariate integral (40) to that of a univariate integral in ν. In
figure 36, we show—based on numerical calculations—the univariate marginal probability
distributions of the Hilbert–Schmidt measure over the real and complex two-qubit states in
terms of Crank-4

max (cf (20)–(22)). Similarly, to their rank-3 counterparts (figure 28), these curves
have differently positioned peaks and are not symmetric, but skewed to the right. (We take
the range of Crank-4

max to be
[− 1

2 , 1
]
, to accord with actual values, rather than the conventional

[0, 1] (cf (12)).) In figure 37, we show the Bures-metric counterpart, although we encounter
some ‘glitch’ in displaying the real curve here.

The counterparts to formulas (40) and (41), in light of our conjecture [7] that the Hilbert–
Schmidt separability probability of the generic real two-qubit states is 8

17 , are (the domains of
integration being the same)

8

17
= 1209 600

17

∫ ∫ ∫
(D1D2D3D4)

3/2(3 − ν)
√

ν dD1 dD2 dD3, (43)
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Figure 36. Full-rank two-qubit univariate marginal probability distributions over Crank-4
max ∈ [− 1

2 , 1]
of the 3-dimensional Hilbert–Schmidt measures on the eigenvalues. The quaternionic curve has
the highest peak, and the real curve, the lowest. Numerical methods were used.
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Figure 37. Counterpart to figure 36 based on the Bures metric. The quaternionic curve has
the highest peak, followed by the complex curve, with the (incompletely constructed) real curve,
apparently the lowest. Numerical methods were used.

and

8

17
= 15 482 880

17

∫ ∫ ∫
σ (1)(Cmax(λ1 . . . λ4))�

4
i<j (λi − λj ) dλ1 dλ2 dλ3. (44)

(Here, 1209 600 = 28 · 33 · 52 · 7 and 15 482 880 = 214 · 33 · 5 · 7. It appears (figure 27 and

(18)) that possibly σ (1)(Cmax(λ1 . . . λ4)) = (2−2Cmax)
3
2√

30
for Cmax ∈ [

1
2 , 1

]
.)

Let us point out the possible relevance of the concept of the Thouless energy [49, p 734]
in the modeling of the threshold or crossover effect we have numerically observed for
eigenvalue-parameterized separability functions in both the full generic real and complex
two-qubit and qubit–qutrit cases. There, the Dyson indices (β = 1, 2) of random matrix
theory only seemed to apply above a certain value of the maximal concurrence Cmax (that is,
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1
2 in the two-qubit case, and possibly 1

3 in the qubit–qutrit instance). (It remains to formally
reconcile these observations with the ones that, in terms of diagonal-entry-parameterized
separability functions, Dyson-index behavior appear to be strictly followed [7].)
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